IBD-SLAM: Learning Image-Based Depth Fusion for Generalizable SLAM

Minghao Yin¹ Shangzhe Wu² Kai Han¹

¹Visual AI Lab, The University of Hong Kong ²Visual Geometry Group, University of Oxford

Background & Contribution

AiL

We address the problem of visual SLAM. We aim to develop a generalizable visual SLAM system that does not require network optimization during the mapping process.

Key contributions:

- We design IBD-SLAM, which can generalize to novel scenes without the need to retrain the model for scene-specific representation.
- We propose to utilize *xyz*-map for high-quality depth fusion.
- Our method runs $10 \times$ faster than the previous state-of-the-art methods during the mapping stage.

Motivation

- Existing SLAM methods require high time consumption and increased memory usage as the scene scales up.
- Existing SLAM systems based on implicit representations require per-scene optimization for mapping, which limits the generalizability to unseen scenes.

Method

• IBD-SLAM predicts the target view RGB image & *xyz*-map by fusing multi-view inputs from previous frames.

Depth maps suffer from multi-view inconsistency in camera coordinates. We propose to utilize *xyz*-map in world coordinates for fusing.

Tracking: Matched points on the reference and rendered images should share the same *xvz* values. By minimizing their xyz differences, we optimize the target camera pose. Mapping: The final colors and *xyz* values are obtained as a weighted sum of their correspondences in reference views.

≻Ablation study

	Depth L1 \downarrow	Acc. \downarrow	Comp. \downarrow	(
w/o novel	1.80	2.66	2.91		
Shared-net	2.35	3.02 3.8			
Ours	1.53	1.83	2.02		
	(a) Ablat	ion study o	of model des	igr	
	Depth L1	↓ Acc.↓	Comp.↓		
iMAP	4.39	4.77	5.02		
iMAP [‡]	5.17	6.19	6.87		
NICE-SLAM	2.49	2.42	2.62		
NICE-SLAM	[‡] 3.13	3.05	3.16		
Ourst	1.72	2.05	2.30		
Ouro					

Qualitative results

≻Reconstruction: Replica

► Reconstruction: Scannet

xvz values in 3D space xvz-mar

Quantitative Results

▶ Reconstruction results & Time consumption

	Depth L1 \downarrow	Acc. \downarrow	Comp.↓	Comp Ratio		Track↓[ms x it]	Map↓[ms x it]	#param .
Orb-SLAM2	$4.49/3.35^{\dagger}$	$3.97/3.36^{\dagger}$	$4.05/3.60^{\dagger}$	$82.4/86.3^{\dagger}$	NICE-SLAM	7.8x10	82.5x60	17.4M
NICE-SLAM	$13.55/2.49^{\dagger}$	$2.87/2.42^{\dagger}$	$3.13/2.65^{\dagger}$	$87.1/90.3^{\dagger}$	ESLAM	6.9x8	18.4x15	9.29M
ESLAM	2.30/1.29 [†]	$2.82/2.34^{\dagger}$	$2.97/2.14^{\dagger}$	89.5/ 94.7 [†]	Co-SLAM	5.8x10	9.8x10	0.26M
Co-SLAM	$2.59/1.60^{\dagger}$	$2.66/2.21^{\dagger}$	$3.21/2.36^{\dagger}$	$88.9/92.7^{\dagger}$	Ours	5.4x20	12.3x1	0.04M
Ours	$2.41/1.53^{\dagger}$	2.25/1.83 [†]	$2.93/2.02^{\dagger}$	90.9/93.8 [†]				

≻Tracking results on TUM-RGBD and Scannet datasets

	fr1/desk	fr2/xyz	fr3/office	Avg		0000	0059	0106	0169	Avg
MAP[35]	7.2	2.1	9.0	6.1	iMAP[35]	55.95	32.06	17.50	70.51	44.00
DI-Fusion[15]	4.4	2.1	15.6	7.4	DI-Fusion[15]	66.99	128.00	18.50	75.80	72.32
NICE-SLAM[53]	2.7	1.8	3.0	2.5	NICE-SLAM[53]	8.64	12.25	8.09	10.28	9.89
Ours	1.8	1.8	2.7	2.2	Ours	7.96	9.19	7.13	7.98	9.44

Ļ	Comp. Ratio †
	91.2
	87.7
	93.8
desi	ign
p. ↓	Comp. Ratio ↑
)2	75.5
	<i>c</i> • •

In table (b), † denotes results without regularization losses. And ‡ denotes Poisson surface reconstruction results.

	Comp Ratio 1		Depth L1 \downarrow	Acc. \downarrow	Comp. \downarrow	Comp. Ratio ↑
· +	Comp. Rano	w/o Caus	3.02	2.81	3 23	88.2
2	75.5	w/o Calanth	2.09	2.23	2.45	92.0
7	61.4	w/o Creat	2.17	2.35	2.64	91.6
2	90.3	w/o Lnormal	1.65	1.98	2.20	92.7
6	87.2	w/o Common	1.62	1.92	2.13	93.3
0	92.2	w/o C.com	1.57	1.86	2.20	93.1
2	93.8	Ours	1.53	1.83	2.02	93.8

(c) Ablation study of pretraining loss functions

➤Tracking: Replica

▶ Reconstruction results with different fusion methods

xyz-map based fusion