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Background & Contribution Method > Ablation study
We address the problem of visual SLAM. We aim to develop a « IBD-SLAM predicts the target view RGB image & xyz-map by __peauy ted coml Bl Intable (b), + denotes results without

regularization losses. And } denotes
Poisson surface reconstruction results.
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(a) Ablation study of model design
A

generalizable visual SLAM system that does not require network
optimization during the mapping process.

Depth maps suffer from
multi-view inconsistency
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coordinates for fusing.

Tracking: Matched
points on the reference

(b) Effects of mesh generation methods (c) Ablation study of pretraining loss functions

Qualitative results

Key contributions:

* We design IBD-SLAM, which can generalize to novel scenes without
the need to retrain the model for scene-specific representation.

 We propose to utilize xyz-map for high-quality depth fusion.

» Our method runs 10 X faster than the previous state-of-the-art
methods during the mapping stage.

Motivation

* Existing SLAM methods require high time consumption and
increased memory usage as the scene scales up.

* Existing SLAM systems based on implicit representations require
per-scene optimization for mapping, which limits the generalizability
to unseen scenes.
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and rendered images
should share the same
xyz values. By
minimizing their xyz
differences, we optimize
the target camera pose.
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Quantitative Results

» Reconstruction results & Time consumption
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Comp. Comp Ratio " Track | [msxit] Map) [msxit] #param |

Orb-SLAM2 4.49/3.35' 3.97/3.36" 4.05/3.60' 82.4/86.3' NICE-SLAM 7.8x10 82.5%60 17.4M
NICE-SLAM 3.55/2.491 2.87/2.421 3.13/2.657 87.1/90.31 ESLAM 6.9x8 18.4x15 9.29M
ESLAM 2.30/1.291 2.82/2.34" 2.97/2.141 89.5/9471  Co-SLAM 5.8x10 9.8x10 0.26M
Co-SLAM  2.59/1.601 2.66/2.21F 3.21/2.367 88.9/92.77  OQurs 5.4x20 12.3x1 0.04M
Ours 2.41/1.531 2.25/1.837 2.93/2.02" 90.9/93.81

» Tracking results on TUM-RGBD and Scannet datasets
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iMAP[°] 72 2.1 9.0 6.1 iMAP[ "] 5595 3206 17.50 7051 4400
DI-Fusion[ ' -] 44 2.1 15.6 74 DI-Fusion[ ' '] 6699 12800 1850 7580 7232
NICE-SLAM[ " '] 2.7 18 3.0 25 NICE-SLAM[" ']  8.64 12.25 8.09 1028 9.89
Ours 1.8 18 2.7 22 Ours 7.96 9.19 713 798 944
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> Reconstruction: Scannet
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> Reconstruction results with different fusion methods
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