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Fig. 1. Splat4D. Our method empowers a wide array of 4D content generation capabilities with high fidelity. Top-left: Generating the 4D representation from
a monocular video; Top-right: 4D human generation guided by an image and motion sequence; Bottom-left: Generation of dynamic 4D objects from image or
text inputs; Bottom-right: Text-guided 4D content editing, enabling detailed scene customization.
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Generating high-quality 4D content frommonocular videos—for applications
such as digital humans and AR/VR—poses challenges in ensuring temporal
and spatial consistency, preserving intricate details, and incorporating user
guidance effectively. To overcome these challenges, we introduce Splat4D,
a novel framework enabling high-fidelity 4D content generation from a
monocular video. Splat4D achieves superior performance while maintaining
faithful spatial-temporal coherence, by leveraging multi-view rendering,
inconsistency identification, a video diffusion model, and an asymmetric
U-Net for refinement. Through extensive evaluations on public benchmarks,
Splat4D consistently demonstrates state-of-the-art performance across var-
ious metrics, underscoring the efficacy of our approach. Additionally, the
versatility of Splat4D is validated in various applications such as text/image
conditioned 4D generation, 4D human generation, and text-guided content
editing, producing coherent outcomes following user instructions. Project
page: https://visual-ai.github.io/splat4d

CCS Concepts: • Computing methodologies→ Animation; Reconstruction.
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1 Introduction
The generation of 4D content—encompassing dynamic 3D objects—
is integral to applications in digital humans, gaming, media, and
AR/VR, where realistic motion and spatial-temporal consistency are
essential. Unlike static 3D object generation [Chen et al. 2023; Lin
et al. 2023; Melas-Kyriazi et al. 2023; Qian et al. 2023; Raj et al. 2023;
Tang et al. 2024b, 2023; Voleti et al. 2024; Wang et al. 2023], creat-
ing 4D content must capture an object’s evolving appearance and
motion within 3D space, which significantly increases the complex-
ity. This challenge is especially pronounced when generating 4D
content from a single monocular video, as it demands simultaneous
inference of appearance and motion for unseen camera viewpoints.
Moreover, the problem is inherently ill-posed, as multiple valid 4D
interpretations can emerge from the same input. Consequently, rep-
resenting 3D shape, texture, and motion in this high-dimensional
space requires a substantial number of parameters, emphasizing the
need for efficient modeling and computational strategies to address
these demands.
Recent works [Bahmani et al. 2024; Cao et al. 2024b; Ren et al.

2023; Singer et al. 2023b; Wang et al. 2024; Zhao et al. 2023; Zheng
et al. 2024] have explored 4D content generation through score-
distillation sampling (SDS) [Poole et al. 2023] loss with pre-trained
diffusion models, producing dynamic scenes but often suffering
from slow generation speeds and spatial-temporal inconsistencies.
To address these limitations, follow-up approaches [Jiang et al. 2023;
Yin et al. 2023; Zeng et al. 2024] leverage 3D-aware diffusion mod-
els [Shi et al. 2023] to improve spatial consistency. Recently, with the
development of video diffusion models [Blattmann et al. 2023a,b; He
et al. 2022], different techniques have been explored for fine-tuning
these models to enable the generation of multi-view video sequences
from single-view inputs. Leveraging this enhanced multi-view pri-
ors, methods such as 4Diffusion [Zhang et al. 2024], SV4D [Xie et al.

2024], and Diffusion4D [Liang et al. 2024b] have been proposed to
advance 4D generation and reconstruction more efficiently. Despite
these advancements, significant challenges persist, including ensur-
ing temporal and spatial consistency, accurately modeling complex
human characteristics (e.g., loose clothing), and effectively inte-
grating diverse input modalities such as images, text, and motion
data.

To address these persistent challenges, we propose a novel frame-
work for generalizable 4D content creation, called Splat4D, which
allows for high-quality 4D generation from a monocular video in-
put, rendering versatile applications. First, we transform a monoc-
ular video into high-quality multi-view image sequences with a
multi-view diffusion model and an image enhancer. A pretrained
large-scale feed-forward 3DGS model is then employed to obtain
spatial and depth features across views, which are then further pro-
cessed by Splatter Image to produce a comprehensive yet coarse
Gaussian field. Next, we introduce a method for refining spatial
and temporal coherence of the 4D Gaussian field representation
through multi-view rendering, inconsistency identification, and a
video diffusion model, resulting in a high-quality 4D representation
with improved visual quality and stability. Finally, to boost the re-
alism of the generation, an asymmetric U-Net model is trained as
the generalizable 3D Gaussian field predictor to produce accurate
and detailed 3D Gaussians, improving overall quality. Our Splat4D
model is the first to incorporate an image enhancer for high-quality
4D generation, leading to substantial performance gains. However,
directly applying the enhancer can cause multi-view inconsistencies
and misalignments. To address this, we introduce uncertainty mask-
ing and asymmetric U-Net training to identify unreliable regions
and adaptively refine the reconstruction. The video diffusion model
then inpaints the masked areas, ensuring spatial-temporal consis-
tency. These components are carefully integrated to complement
each other, achieving results unattainable by any single module
alone. By seamlessly integrating these components, our Splat4D
framework can effectively generate high-quality spatial-temporal
consistent 4D content at speed. Meanwhile, it can be applied for var-
ious of applications, such as text/image conditioned 4D generation,
4D human generation, and text-guided content editing (see Fig. 1).

We thoroughly evaluate our framework on public benchmark,
achieving the state-of-the-art results across the board on all metrics,
validating the superior performance of our method. Moreover, we
also showcase the results of applying ourmethod for the applications
of text/image conditioned 4D generation, 4D human generation, and
text-guided content editing, demonstrating faithful and coherent
results following the provided guidance.

2 Related Work

3D Generation. For 3D content generation, early works such as
DreamFusion [Poole et al. 2023] pioneer the use of Score Distilla-
tion Sampling (SDS) loss to distill priors from 2D diffusion models,
optimizing 3D content from textual or image input. Subsequent
efforts [Cao et al. 2023, 2024a; Chen et al. 2024; Han et al. 2023; Li
et al. 2024; Liang et al. 2024a; Pan et al. 2024; Sargent et al. 2024;
Sun et al. 2023; Tang et al. 2024b; Wang et al. 2023; Weng et al.
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2023; Yi et al. 2024; Zhou et al. 2024] address challenges like multi-
view Janus artifacts, slow generation speed, and oversaturation by
fine-tuning diffusion models for viewpoint control or directly gener-
ating multi-view images within a single diffusion pass. Methods like
Zero123 [Liu et al. 2023] and SyncDreamer [Liu et al. 2024] refine 2D
diffusion models for multi-view consistency, while others, including
Magic3D [Lin et al. 2023] and Direct2.5 [Lu et al. 2024], adopt alter-
native 3D representations such as Instant-NGP [Müller et al. 2022],
DMTet [Müller et al. 2022], or explicit mesh-based approaches [Lu
et al. 2024] to improve runtime and fidelity.
DreamGaussian [Tang et al. 2024b] introduces a point-based

representation, utilizing 3D Gaussians for faster generation and
superior quality compared to traditional Neural Radiance Fields
(NeRF) [Mildenhall et al. 2021]. The feed-forward method LGM
(Large Multi-View Gaussian Model) [Tang et al. 2024a] efficiently
represents scenes with multi-view Gaussian features and uses an
asymmetric U-Net to process multi-view images. In our work, we
draw inspiration from the ideas introduced in DreamGaussian [Tang
et al. 2024b], which uses 3D Gaussians for faster, high-quality gen-
eration, and LGM [Tang et al. 2024a], which employs multi-view
Gaussian features and asymmetric U-Nets to process multi-view
images from single-view inputs.
VideoDiffusionModel.Recent video diffusionmodels have achieved
impressive results in creating realistic motions and geometrically
consistent sequences [Blattmann et al. 2023a,b; Guo et al. 2023; He
et al. 2022; Ho et al. 2022; Singer et al. 2023a; Voleti et al. 2022]. Their
strong generalization abilities stem from training on extensive im-
age and video datasets, which are more accessible than large-scale
3D or 4D datasets. These models are increasingly utilized as foun-
dational tools for tasks like multi-view synthesis and 3D content
generation. For instance, frameworks like SV3D [Voleti et al. 2024]
adapt latent video diffusion models to produce consistent multi-
view imagery, while approaches like AnimateDiff [Guo et al. 2023]
enhance text-to-image models by incorporating motion modules to
capture temporal dynamics. Similarly, SV4D [Xie et al. 2024] em-
ploys video diffusion models to achieve both video generation and
novel view synthesis. Leveraging these advancements, our approach
extends pre-trained video generation models by introducing view
attention mechanisms, aligning outputs for improved coherence in
multi-view and 4D applications.
4D Generation. DreamGaussian4D [Ren et al. 2023] leverages a
three-stage framework to generate high-quality 4D animations. It
uses a modified version of Gaussian splatting combined with image-
to-video diffusion for high-fidelity 3D static models that are de-
formed over time using a learned deformation field. DYST (Dynamic
Scene Transformer) [Seitzer et al. 2023] innovates further by decom-
posingmonocular videos into distinct latent representations of scene
content, per-view dynamics, and camera pose through co-training
on real and synthetic data. GaussianFlow [Gao et al. 2024] intro-
duces Gaussian fields paired with optical flow constraints, further
enhancing consistency in generated motion by aligning temporal
transitions. AvatarGO [Cao et al. 2024b] proposes a correspondence-
aware motion field that enables harmonious generation of 4D hu-
man–object interactions from text.

Building on the foundation of 3D-aware diffusion models [Shi
et al. 2023], recent methods such as Stag4D [Zeng et al. 2024] and
4DGen [Yin et al. 2023] focus on enhancing spatial consistency in
4D generation. Meanwhile, Consistent4D [Jiang et al. 2023] em-
ploys a video interpolation model to improve both temporal and
spatial coherence. More recently, video diffusion models have been
adopted for further 4D content enhancement. For instance, 4Dif-
fusion [Zhang et al. 2024] introduces a multi-view video diffusion
model coupled with a 4D-aware SDS loss to optimize dynamic NeRF
representations. Similarly, Diffusion4D [Liang et al. 2024b] lever-
ages a 4D-aware video diffusion framework combined with explicit
4D construction to synthesize 4D assets. For feed-forward genera-
tion, SV4D [Xie et al. 2024] advances this line of work by utilizing
a multi-view video synthesis model for efficient 4D optimization.
Additionally, L4GM [Ren et al. 2024] proposes a 4D interpolation
model enabling fast feed-forward 4D generation from single-view
video inputs.

However, current 4D generation methods often struggle to pro-
duce high-quality content that maintains both spatial and temporal
consistency. Issues such as blurry textures, geometric distortions,
and temporal flickering are still prevalent. To address these limi-
tations, we introduce Splat4D, a novel approach that can generate
high-quality, spatial-temporal consistent 4D content.

3 Method
Given a single-view image 𝐼 or a text prompt𝑦 as input, Splat4D facil-
itates the generation of a 4D dynamic scene. Specifically, our method
captures both the spatial structure and the temporal evolution of the
scene by decomposing it into multiple 3D Gaussian distributions.
In the subsequent sections, we first illustrate the preliminaries that
underpin our method in Section 3.1. We then delve into the core
techniques of our method, including (1) coarse 4D Gaussian gener-
ation that leverages pre-trained diffusion priors in Section 3.2, (2)
temporal and spatial refinement for improving consistency in Sec-
tion 3.3, and (3) generalizable 3D Gaussian field predictor learning
in Section 3.4. An overview of our pipeline is shown in Fig. 2.

3.1 Preliminaries
3.1.1 3D Gaussian Splatting. Different from NeRF [Mildenhall et al.
2021], which relies on neural networks for novel view synthesis,
3D Gaussian Splatting (3DGS) [Kerbl et al. 2023] takes a different
approach by directly optimizing the 3D position x and attributes of
3D Gaussians, such as opacity 𝛼 , anisotropic covariance, and spher-
ical harmonic (SH) coefficients SH [Ramamoorthi and Hanrahan
2001]. Each 3D Gaussian 𝐺 (x) is characterized by a 3D covariance
matrix Σ centered at its mean position 𝜇.

𝐺 (x) = 𝑒−
1
2 (x−𝜇 )

𝑇 Σ−1 (x−𝜇 ) . (1)

For 3DGS, a tile-based rasterizer is utilized by dividing the screen
into tiles, such as 16×16 pixels. For each tile it intersects, a Gaussian
is instantiated and assigned a key encoding its depth in view space
and the corresponding tile ID. Depth sorting is then applied to the
Gaussians, enabling the rasterizer to efficiently resolve occlusions
and overlapping structures. The final RGB colorC is computed using

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.



4 • Minghao Yin, Yukang Cao, Songyou Peng, and Kai Han

a point-based 𝛼-blending approach, which samples points along the
ray at regular intervals.

3.1.2 Large Multi-View Gaussian Model (LGM). The LGM frame-
work (e.g. [Tang et al. 2024a]) transforms a single input image into
a 3D Gaussian representation of the object through a systematic
process. First, it employs MVDream [Shi et al. 2023], a multi-view
diffusion model, to generate multi-view consistent images from the
input. MVDream synthesizes images from four viewpoints, ensur-
ing they align geometrically and maintain visual consistency. These
multi-view images are then processed by an asymmetric U-Net, the
encoder extracts multi-scale spatial features from the images, while
the decoder focuses on reconstructing these features into dense
splatter images [Szymanowicz et al. 2024]. Splatter images encode
the parameters for 3D Gaussians for each pixel, such as position,
size, color, and opacity. These splatter images are then transformed
into 3D Gaussian representations by backprojecting the pixel-wise
Gaussian parameters into 3D space using the camera parameters.
We leverage the feedforward LGM for efficient but coarse scene
representation generation.

3.2 Coarse 4D Gaussian Generation
Existing 4D generative methods [Bahmani et al. 2024; Ren et al.
2023; Singer et al. 2023b; Wang et al. 2024; Zhao et al. 2023; Zheng
et al. 2024] typically employ pre-trained diffusion models [He et al.
2022] and score distillation sampling (SDS) [Poole et al. 2023] to
subsequently generate and animate 3D scenes from either text or
image guidance. However, we observe two main limitations in such
techniques: (1) it struggles to produce large, dynamic motions ef-
fectively, and (2) it requires significant training time to generate a
single outcome. Drawing inspiration from the success of SV4D [Xie
et al. 2024], our approach aims to overcome these limitations by
first generating single-view videos and then distilling these videos
into the 4D space for further refinement and animation.

3.2.1 Multi-view Video Generation. We utilize the video diffusion
model [Blattmann et al. 2023a] to generate the image sequence.
However, relying solely on a single-view video does not provide
enough information for robust 4D modeling. This limitation stems
from issues like depth ambiguity and the lack of side and back view
information. To address this, we enhance the single-view video by
using MV-Adapter [Huang et al. 2024] to generate additional views,
including the front, back, and sides, thereby enriching the model
with more comprehensive rotational perspectives:

MV-Adapter(𝐼𝑡 ) → {𝐼𝑡 , 𝐼 left𝑡 , 𝐼
right
𝑡 , 𝐼back𝑡 }, (2)

See Supplementary Material for evaluation for the choice of MV-
Adapter over SV4D.

3.2.2 Multi-view Image Enhancer. Although MV-Adapter can ro-
bustly provide multi-view perspectives, their generated videos often
lack fine-grained details and the high resolution required for realis-
tic 4D content (see the figure in the supplementary material). This
issue is expected as the input samples would always fall outside the
training distribution of MV-Adapter. To address this, we propose
to apply an image enhancer model [Wang et al. 2018] IE to refine
textures, edges, and details for each frame and each view.

3.2.3 4D Gaussian Reconstruction. After generating a high-quality,
multi-view image sequence, we proceed to construct a 4D Gaussian
field. Following LGM [Tang et al. 2024a], we first input the multi-
view image sequence into U-Net to encode key spatial and depth
features across the views. The U-Net architecture is well-suited for
this task because it can capture detailed structures at multiple reso-
lutions through its encoder-decoder structure. The encoder captures
feature maps at different scales, identifying essential textures and
depth cues, while the decoder reconstructs these features into a
cohesive representation.

Once the U-Net has processed the multi-view sequence, we apply
the Splatter Image [Szymanowicz et al. 2024] method to project these
learned features into a continuous 4D Gaussian field. Specifically,
Splatter Image maps each pixel from the feature maps into a series
of localized Gaussian distributions in 3D space, with each Gaussian
representing a small spatial region from the scene. To form the final
temporally consistent Gaussian sequences, we design our network to
separately reconstruct a 3D Gaussian field for each frame (time step).
Specifically, we construct a stacked representation of multiple 3D
Gaussians, represented as G(S, 𝑡) = [X𝑡 , 𝑠𝑡 , 𝑟𝑡 , 𝜎𝑡 , 𝜁𝑡 ], with position,
scale, rotation, opacity and Spherical Harmonics (SH) at time 𝑡 .
This Gaussian field serves as a foundational structure, providing a
spatially continuous and temporally stable representation that can
be rendered from any angle.

3.3 Spatial-Temporal Consistency Refinement
Although multi-view video generation and image enhancement
techniques can provide detailed 3D information necessary for con-
structing a 4D Gaussian scene, the resulting reconstruction still
suffers from issues with temporal and spatial consistency. This hap-
pens because the MV-Adapter has difficulty maintaining consistent
multi-view images. Additionally, since the MV-Adapter processes
each frame independently, it further contributes to these inconsisten-
cies in the model. To tackle this problem, we introduce a multi-step
approach that involves two key techniques: inconsistency masking
and uncertainty-guided refinement.

3.3.1 Inconsistency Masking. We start by rendering a sequence of
multi-view images {I𝑡 ,Ileft

𝑡 ,Iright
𝑡 ,Iback

𝑡 |𝑡 ∈ [1,𝑇 ]} from the 4D
Gaussian field G(S, 𝑡), where I represents the rendered images.
For each time step 𝑡 , we then generate uncertainty maps [Kulhanek
et al. 2024] to detect regions with inconsistencies. We extract DI-
NOv2 [Oquab et al. 2024] features from the rendered images and
predict the pixel-wise uncertainty 𝜎 using an uncertainty prediction
network [Kulhanek et al. 2024]. These uncertainty maps highlight
areas that show significant variation or deviation between frames,
which are often caused by issues like motion artifacts, occlusions,
or perspective differences. By identifying these inconsistent areas,
we create a mask that helps us focus on correcting the problematic
regions while keeping the stable areas intact. The uncertainty mask
is defined as𝑀 = 1

(
1

2𝜎2 > 1
)
, where 1 is the indicator function.

3.3.2 Uncertainty-guided Refinement. Inspired by [Yu et al. 2024],
we address the inconsistencies highlighted by the uncertainty map
by applying a video denoising diffusion model [Xing et al. 2024]
to the rendered sequence. This model leverages the masked areas
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Fig. 2. Overview of Splat4D. Our method for 4D content generation begins with processing input data (text, image, or monocular video) to produce
high-quality multi-view image sequences. These sequences are used to initialize a 4D Gaussian representation via an asymmetry U-Net and image splattering.
Refinement steps include leveraging uncertainty masking and video denoising diffusion to ensure high fidelity and spatial-temporal consistency, culminating
in versatile 4D content creation. The pipeline supports optional text-guided content editing, enabling dynamic modifications of the 4D output for enhanced
flexibility and creative control.

identified earlier and restores the temporal and spatial consistency
by “filling in” these regions with content that aligns seamlessly with
the surrounding pixels. The diffusion model operates iteratively,
refining each frame while considering the neighboring frames to
ensure smooth transitions and maintain consistent visual quality.
This step is crucial for preserving the flow of the sequence, reducing
issues like jitter or flicker that can disrupt the viewer’s experience.
Once the sequence is refined and consistent, the updated frames are
used to improve the 4D Gaussian field. This creates a feedback loop,
aligning the 4D representation with the enhanced image sequence,
which boosts the overall quality and stability of the 4D scene. Note
that we condition the video diffusion model on the first and last
frames of the input sequence to address the hallucination problem.

3.4 Generalizable 3D Gaussian Field Predictor Learning
Aside from the inconsistency issues we’ve already improved, we also
find that the quality of the 4D Gaussian fields doesn’t always match
the improvements made by the image enhancer. This is expected as
there is a notable domain gap between the pre-trained distribution
of the image enhancer model [Wang et al. 2018], which is trained on
DIV2K dataset [Agustsson and Timofte 2017], and LGM [Tang et al.
2024a], which is trained on Objaverse [Deitke et al. 2023]. To address
this issue, we propose to fine-tune the U-Net model derived from
LGM with the pre-processed Objaverse dataset. Specifically, we first
follow LGM [Tang et al. 2024a] to filter low-quality 3D models. In
each training step, we randomly choose an input image with an ele-
vation angle between -30 and 30 degrees. The MV-Adapter [Huang
et al. 2024] is then used to generate four orthogonal views, including
the original image. These views are processed through the image
enhancer and consistency refinement steps, and are subsequently

passed into the U-Net model to produce the 4D Gaussian field. Fi-
nally, we render images from the Gaussian field based on the angles
of the four orthogonal views for supervision. This training process
allows the fine-tuned U-Net to reduce the domain gap between
the pre-trained U-Net from LGM and the image enhancer model,
resulting in improved quality of the 4D Gaussian fields.

4 Experiments
For the experiments, we conduct both qualitative and quantitative
comparisons on 4D generation, perform ablation studies, and ex-
plore various applications of our method.

4.1 Implementation Details
For the evaluation of video-to-4D generation, we utilize the video
dataset provided by Consistent4D [Jiang et al. 2023]. We employ the
Segment Anything Model (SAM) [Kirillov et al. 2023] to preprocess
the input image sequences to extract the foreground objects. To
evaluate image-to-4D generation, we curate a dataset by collecting
images from the internet. These images are converted to RGBA
format and resized to a resolution of 512×512 to ensure compatibility
with our pipeline. For fine-tuning, we utilize the 80K 3D object
subset[Tang et al. 2024a] of the Objaverse dataset [Deitke et al. 2023]
after filtering out low-quality models. Each 3D model is rendered
into RGB images from 100 camera views at a resolution of 512× 512.
The training process is being conducted using the asymmetric

U-Net model on 4 NVIDIA V100 GPUs, with each GPU processing
a batch size of 4 under bfloat16 precision. For each batch, a single
camera view is being randomly sampled, while 4 orthogonal views
are being generated using the MV-adapter [Huang et al. 2024] based
on the input view. The asymmetric U-Net model is generating the
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Table 1. Video-to-4D quantitative Comparison on Consistent4D
Dataset [Jiang et al. 2023].

Model LPIPS↓ CLIP-S↑ FVD-F↓ FVD-V↓
Consistent4D 0.134 0.87 1133.93 735.79
STAG4D 0.126 0.91 992.21 685.23
SV4D 0.118 0.92 732.40 503.51
4Diffusion 0.13 0.94 489.2 405.5
Ours 0.090 0.97 390.85 282.79

3D Gaussian field, which is then being rendered into images for the
orthogonal views. Original Objaverse 3D object rendered images are
being used as supervision signals. The rendered 3D Gaussians are
being compared to the original at a resolution of 512×512 using the
mean squared error (MSE) loss. To optimize memory usage, images
are being resized to 256×256 for LPIPS loss calculation. The AdamW
optimizer is being employed with a learning rate of 4 × 10−4, a
weight decay of 0.05, andmomentum parameters of 0.9. The learning
rate is following a cosine annealing schedule to gradually decay to
zero during training. Gradients are being clipped to a maximum
norm of 1.0 to enhance stability. Additionally, grid distortion and
camera jitter are being applied with a probability of 50% to improve
generalization.

4.2 Main Comparison
We compare our model with state-of-the-art baselines including
STAG4D [Zeng et al. 2024], SV4D [Xie et al. 2024], Consistent4D [Jiang
et al. 2023], 4Diffusion [Zhang et al. 2024] and Diffusion4d [Liang
et al. 2024b]. As shown in Fig. 3, both STAG4D and SV4D suffer
from producing satisfactory results when rendering novel views.
This distinction is particularly pronounced in scenarios involving
complex human structures, such as detailed facial features and loose
clothing (first row). These results underscore the superior capability
of our method in performing robust video-to-4D reconstruction.

For video-to-4D quantitative evaluation in Table 1, we assess the
quality of each generated image by comparing it with its corre-
sponding ground truth using metrics such as Learned Perceptual
Similarity (LPIPS) and CLIP-Score (CLIP-S). These metrics help eval-
uate the visual fidelity and semantic alignment of the generated
images. To measure temporal and spatial coherence in the generated
video, we report the Fréchet Video Distance (FVD), a widely used
video-level metric in video generation tasks. Our method achieves
the best performance compared to all baselines across all evaluation
metrics on Consistent4D dataset [Jiang et al. 2023] and ObjaverseDy
test set [Deitke et al. 2023; Xie et al. 2024] as shown in Table 1, indi-
cating that our method is able to generate temporally and spatially
coherent 4D content. For image-to-4D evaluation in Table 3, we
compare the generation results from measurements as in [Liang
et al. 2024b]. Our method still outperforms all baseline methods.

4.3 Ablation Study
We conduct an ablation study on the Consistent4D dataset [Jiang
et al. 2023] and ObjaverseDy test set [Deitke et al. 2023; Xie et al.

Table 2. Video-to-4D Quantitative Comparison on ObjaverseDy Test
Set [Deitke et al. 2023; Xie et al. 2024].

Model LPIPS↓ CLIP-S↑ FVD-F↓ FVD-V↓
Consistent4D 0.165 0.896 880.54 488.38
STAG4D 0.158 0.860 929.10 453.62
SV4D 0.131 0.905 659.66 368.53
Ours 0.112 0.939 383.71 267.94

Table 3. Quantitative Comparison on Image-to-4D Generation.

Model LPIPS↓ CLIP-S↑ PSNR↓ FVD↓
4DGen 0.28 0.84 14.4 736.6
STAG4D 0.24 0.86 15.2 675.4
Diffusion4D 0.18 0.89 16.8 490.2
Ours 0.12 0.94 19.2 395.0

Table 4. Ablation Study. The experiments are conducted on Consistent4D
dataset [Jiang et al. 2023].

Model LPIPS↓ CLIP-S↑ FVD-F↓ FVD-V↓
w/o mask 0.114 0.93 507.15 413.79
w/o train 0.107 0.96 445.33 364.81
Ours 0.090 0.98 390.85 282.79

2024], to assess the impact of key components in our method. Specif-
ically, we examine three variants: no uncertainty masking, 2) no
U-Net training, and 3) our full model. The evaluation metrics in-
clude LPIPS, CLIP-S, FVD-F, and FVD-V, which respectively measure
perceptual similarity, alignment with textual semantics, and spatial-
temporal consistency.

As shown in Table 4, omitting either the uncertainty masking or
U-Net training significantly degrades LPIPS, CLIP-S and FVD met-
rics, demonstrating the importance of uncertainty map both compo-
nents in handling spatial-temporal inconsistencies and preserving
high-fidelity. In Supplementary Material, we present additional com-
parisons of model design choices, including the use of feedback loop,
the incorporation of the image enhancer, and video diffusion model
conditioning on first/last frames as discussed in Section 3.3.

4.4 Splat4D for Different Applications
Besides taking a single-view image or a text prompt as input to
obtain 4D dynamic scenes, our method can also be applied to differ-
ent tasks, including 4D human motion transfer, and text-guided 4D
content editing.

4.4.1 Text/Image Conditioned 4D Generation. To demonstrate our
method’s capability for text-to-4D and image-to-4D generation, we
show our generation results in Fig. 4. For text-to-4D generation, we
first employ a text-to-image diffusion model to convert the input
textual prompt into a high-quality image and then combine that
image with the original text in a stable video diffusion model to pro-
duce a coherent short video. In image-to-4D generation, the pipeline
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Input View Novel View Input View Novel View Novel ViewInput View

STAG4D SV4D Ours

Fig. 3. Comparison on video-to-4D generation. The rendered image of the input view from the 4D object is on the left column, and the rendered images of
the novel view are illustrated on the two right columns.

simply begins with an input image, bypassing the text-to-image
step. From the resulting videos, we use a multi-view diffusion model
to generate four orthogonal view sequences, which are then fed
into our reconstruction pipeline to construct a 4D Gaussian field.

As shown in Fig. 4, the top two rows illustrate image-to-4D results,
while the bottom two rows depict text-to-4D outputs. The generated
4D reconstructions demonstrate the effectiveness of our pipeline
in maintaining structural coherence and high visual fidelity across
multiple perspectives. For the image-to-4D examples, we observe
precise alignment and consistent detail retention in novel views
derived from the input image. As for the text-to-4D results, the

generated scenes accurately align with the semantic content of the
input text, producing dynamic and visually plausible outputs.

4.4.2 4D Human Generation. Given a source video with the desired
motion to be transferred and an image of the human subject to be
animated, we first use a pose extraction model [Kocabas et al. 2020]
to detect key body landmarks, skeletal poses, andmotion trajectories.
Next, we apply Champ [Zhu et al. 2024], a 2D motion transfer
model, to animate the input image, making it move according to
the extracted motion. Our method then uses the resulting animated
image sequence {𝐼𝑡 |𝑡 ∈ [1,𝑇 ]}, where 𝑇 is the total number of
frames, to generate the corresponding 4D Gaussian scenes. Fig. 5
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Input text:
Burning candle

Input text:
Swimming jellyfish

Input text:
Dancing Pikachu

Input text:
Kung Fu Panda 

exercising

Input Image Input ImageGenerated 4D Object Generated 4D Object

Fig. 4. 4D Content Creation with Text/Image as Input. The first two rows are results with image inputs, and bottom two rows are results with text inputs.

showcases the results of our 4D human generation pipeline, which
combines a single input image with a motion sequence to produce
high-fidelity, dynamic human representations. First, the input image
and motion sequence are processed through a 2D motion transfer
model to create a video of the subject performing the specified
action (see details in Supplementary Material). Next, we follow our

Input Image

Fig. 5. 4D Human Generation with an Input Image as Guidance. The
first row shows the input image, while the subsequent rows depict rendered
novel views under various poses.

Text guidance: “The spaceship injecting fuel”

Text guidance: “Pikachu wearing a T-shirt”

Text guidance: “Robot WALL-E covered by snow”

Input Image:

Input text:
“Dancing Pikachu”

Input text:
“Moving robot 

WALL-E”

Fig. 6. 4D Content Editing with Text Guidance. The first column show-
cases the original input (text or image), while the subsequent three columns
present the edited outputs. Each edited 4D object is displayed beneath the
corresponding text.

pipeline and apply a multi-view diffusion model and construct 4D
Gaussians of the human.

Fig. 5 illustrates the effectiveness of our approach. These results
highlight our ability to preserve intricate human details, including
complex structures like facial details and loose clothing, across
varying views and motions.

4.4.3 Text-guided Editing. For this application, we use the Instruct-
Pix2Pix [Brooks et al. 2023] network to modify the output video
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generated by the video diffusion model, guided by a text prompt (see
Fig. 2). For instance, starting with a video of a house, the pix2pix
network is applied to transform the video based on a prompt like
“house on fire”. Specifically, the pix2pix network performs image-
to-image translation, adjusting each frame of the video to match
the specified scene changes. Once the transformation is complete,
the modified video sequence is used to refine the corresponding 4D
Gaussian sequence, resulting in a final 4D content that accurately re-
flects the updated dynamics of the “house on fire” scenario. In Fig. 6,
we showcase our method’s text-guided 4D editing capability that
transforms 4D Gaussian representations based on user-specified
textual or visual prompts. Starting from our 4D Gaussian field, we
employ a pix2pix network to edit the rendered video according
to the guidance text, producing an updated video sequence. This
sequence is further optimized using the 4D Gaussian representation,
ensuring coherence and alignment with the guidance.

The results are illustrated in Fig. 6. These examples demonstrate
the effectiveness of our approach in introducing realistic and co-
herent transformations, such as attribute changes or new dynamic
effects, while maintaining high fidelity to the original 4D content
structure.

5 Conclusions
In this paper, we introduce a novel framework for high-quality 4D
content generation, which addresses key challenges in dynamic
scene creation by leveraging a 4D Gaussian splatting representa-
tion. Our method demonstrates strong generalization capabilities,
enabling the generation of temporally stable and high-fidelity 4D
content from monocular videos, images, and text prompts. Through
careful integration of a multi-view video diffusion model and an
asymmetric U-Net, we improve both spatial and temporal consis-
tency, enhancing the visual coherence of the generated scenes. Our
ablation studies validate the importance of components such as un-
certaintymapmasking and asymmetry U-Net training for improving
the quality of 4D content generation. The proposed framework is
versatile and can be applied to a variety of scenarios, including
text/image conditioned 4D generation, 4D human generation, and
text-guided content editing. We believe that our approach marks a
significant advancement in 4D scene generation, offering a robust
solution that balances computational efficiency with high-quality re-
sults for real-world applications in digital humans, gaming, AR/VR,
and media production.
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Splat4D: Diffusion-Enhanced 4D Gaussian Splatting for Temporally and
Spatially Consistent Content Creation
–Supplementary Material–

A Details for 4D Human Generation
The process begins with a source video containing the desired mo-
tion for transfer. A pose extraction model [Kocabas et al. 2020]
is used to capture SMPL [Loper et al. 2023] sequences, key body
landmarks, skeletal poses, and motion trajectories over time. This
model processes each frame to extract temporal motion data while
preserving dynamic details such as joint rotations, limb movements,
and fine-grained motion nuances.

Once the SMPL motion data is obtained, it is projected onto four
orthogonal views to serve as input for multi-view generation via
the MV-Adapter [Huang et al. 2024]. The projections include se-
quences of 2D depth images, normal maps, human joint images, and
semantic segmentation images. These multi-view motion represen-
tations are then fed into the Champ [Zhu et al. 2024] 2D motion
transfer model, which generates four sequences of motion images.
This model takes static images of the target subject as input and,
guided by the extracted pose data, produces motion sequences that
replicate the source motion while preserving the visual identity
and appearance of the target subject. These sequences serve as an
intermediate representation, bridging the source motion and the
final 4D output.
The generated 2D motion sequences, denoted as {𝐼𝑡 |𝑡 ∈ [1,𝑇 ]},

are subsequently used to initialize a 4D Gaussian field in our frame-
work. Each frame at time 𝑡 is represented as a set of Gaussians
G(S, 𝑡) = [X𝑡 , 𝑠𝑡 , 𝑟𝑡 , 𝜎𝑡 , 𝜁𝑡 ]. Using our U-Net-based refinement and
Gaussian splatting pipeline, the initial field is optimized to ensure
temporal and spatial consistency across views. This process cap-
tures intricate details such as loose clothing and rapid movements,
resulting in a coherent and realistic 4D human representation.

B Additional Ablation Study
In Table 5, we perform an ablation study focusing on multiple fac-
tors: the inclusion of the feedback loop, the image enhancer, the
video diffusion model condition, the use of MV-Adapter compared
to SV4D [Xie et al. 2024], as detailed in Section 3.2. The experi-
ments are conducted on Consistent4D [Jiang et al. 2023]. Results
demonstrate that using feedback loop optimization, the image en-
hancer improves visual quality. Condition video diffusion model
with first and last frames of input sequence can enhance generation
performance. Furthermore, replacing SV4D with MV-Adapter leads
to better reconstruction results. These findings highlight the impor-
tance of both components in achieving high-quality dynamic scene
generation. As discussed in Section 3.2, we illustrate the images
before and after the image enhancer process in Fig. 7.

C Test on Complex Scenarios
In Fig.5 of the main paper, our method successfully handles danc-
ing humans with non-rigid loose clothing. In order to measure the

Table 5. Additional Ablation Study. The first row illustrates the results
without image enhancer. The second row shows the results using SV4D over
MV-Adapter for multi-view generation.

Model LPIPS↓ CLIP-S↑ FVD-F↓ FVD-V↓
w/o loop 0.120 0.90 831.84 473.91
w/o enhancer 0.108 0.96 463.39 384.26
𝑆𝑉 4𝐷∗ 0.105 0.94 441.72 356.25
w/o cond 0.101 0.94 425.72 339.05
Ours 0.090 0.98 390.85 282.79

Table 6. Evaluation on Liquid Case.

Model CLIP↑ LPIPS↓ FVD↓
Consistent4D [Jiang et al. 2023] 0.78 0.166 1282.5
STAG4D [Zeng et al. 2024] 0.80 0.160 1231.9
SV4D [Xie et al. 2024] 0.88 0.147 772.6
Ours 0.93 0.127 493.0

Table 7. Evaluation on Multi-object Case.

Model CLIP↑ LPIPS↓ FVD↓
Consistent4D [Jiang et al. 2023] 0.82 0.138 1190.7
STAG4D [Zeng et al. 2024] 0.85 0.144 1028.2
SV4D [Xie et al. 2024] 0.90 0.125 722.3
Ours 0.96 0.102 428.5

Original Enhanced Original Enhanced

Fig. 7. Effect of Image Enhancer. We show the difference between hu-
man images before and after enhancement with the image enhancer. The
enhanced images contain more fine details.

performance on more complex domains, we test on fluids (“splash-
ing water” from Consistent4D [Jiang et al. 2023]) and multi-object
interactions (“bouncing ball” from DNeRF [Pumarola et al. 2021],
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Input Image Novel View

Fig. 8. 4D Generation Results with Background. The first column on the left shows the input images, while the following three columns show the
generation results with a bounded background.

front-view video). The quantitative results for the liquid and multi-
object scenario are reported below. Experimental results show that
our model can handle complex scenarios such as cloth, fluids and
multi-object interactions.

D More Visualizations
In Fig. 7, we show the difference between original image enhanced
image. In Fig. 8 we show our model can handle more challenging
cases with bounded 4D scene. In Fig. 9 and Fig. 10 we show more
text/image to 4D generation results.
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Input image:

Input image:

Input image:

Input image:

Input text
Walking tiger

Input text:
Red rose

Input image:

Input image:

Fig. 9. 4D Generation Results Conditioned on Text/Image. We present additional text/image-to-4D generation results. On the left are the inputs, and on
the right are the generated 4D objects.
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Input View Novel View Input View Novel View

Fig. 10. Video-to-4D Generation. The left column shows the rendered image of the input view for the 4D object. The right columns show rendered images of
novel views.
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